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Transfer learning has gained a lot of attention and interest in the past decade. One crucial research issue

in transfer learning is how to find a good representation for instances of different domains such that the

divergence between domains can be reduced with the new representation. Recently, deep learning has been

proposed to learn more robust or higher-level features for transfer learning. In this article, we adapt the au-

toencoder technique to transfer learning and propose a supervised representation learning method based

on double encoding-layer autoencoder. The proposed framework consists of two encoding layers: one for

embedding and the other one for label encoding. In the embedding layer, the distribution distance of the

embedded instances between the source and target domains is minimized in terms of KL-Divergence. In the

label encoding layer, label information of the source domain is encoded using a softmax regression model.

Moreover, to empirically explore why the proposed framework can work well for transfer learning, we pro-

pose a new effective measure based on autoencoder to compute the distribution distance between different

domains. Experimental results show that the proposed new measure can better reflect the degree of transfer

difficulty and has stronger correlation with the performance from supervised learning algorithms (e.g., Lo-

gistic Regression), compared with previous ones, such as KL-Divergence and Maximum Mean Discrepancy.

Therefore, in our model, we have incorporated two distribution distance measures to minimize the difference

between source and target domains in the embedding representations. Extensive experiments conducted on

three real-world image datasets and one text data demonstrate the effectiveness of our proposed method

compared with several state-of-the-art baseline methods.
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1 INTRODUCTION

Transfer learning aims to adapt knowledge from an auxiliary source domain to a target domain

with little or without any label information to build a target prediction model of good general-

ization performance. In the past decade, a vast amount of attention has been paid on developing

methods to transfer knowledge effectively across domains (Pan and Yang 2010). A crucial research

issue in transfer learning is how to reduce the difference between the source and target domains

while preserving original data properties. Among different approaches to transfer learning, the

feature-based transfer-learning methods have proven to be superior for the scenarios where orig-

inal raw data between domains are very different, while the divergence between domains can be

reduced. A common objective of feature-based transfer-learning methods is to learn a transfor-

mation to project instances from different domains to a common latent space where the degree of

distribution mismatch of the projected instances between domains can be reduced (Blitzer et al.

2006; Dai et al. 2007a; Pan et al. 2008, 2011; Zhuang et al. 2014).

Recently, because of the power on learning high-level features, deep learning has been applied

to transfer learning (Xavier and Bengio 2011; Chen et al. 2012; Joey Tianyi Zhou and Yan 2014).

Xavier and Bengio (2011) proposed to learn robust features with stacked denoising autoencoders

(SDA) (Vincent et al. 2010) on the union of data of a number of domains. The learned new features

are considered as high-level features and used to represent both the source and target domain data.

Finally, standard classifiers are trained on the source domain labeled data with the new represen-

tations and make predictions on the target domain data. Chen et al. (2012) extended the work of

SDA, and proposed the marginalized SDA (mSDA) for transfer learning. mSDA addresses two lim-

itations of SDA: highly computational cost and lack of scalability with high-dimensional features.

Though the goal of previous deep-learning-basedmethods for transfer learning is trying to learn

a more powerful representation to reduce the difference between domains, most of them did not

explicitly minimize the distribution distance between domains when learning the representation.

Therefore, the learned feature representation can not guarantee the reduction of distribution differ-

ence. Moreover, most previous methods are unsupervised, which thus fail to encode discriminative

information into the representation learning.

In the previous work (Zhuang et al. 2015), we proposed a supervised representation learning

method for transfer learning based on double encoding-layer autoencoder. Specifically, the

proposed method, named Transfer Learning with Double encoding-layer Autoconders (TLDA),

is shown in Figure 1. In TLDA, there are two encoding and decoding layers, respectively, where

the encoding and decoding weights are shared by both the source and target domains. The first

encoding layer is referred to as the embedding layer, where the distributions of the embedded

instances between source and target domains are enforced to be similar by minimizing the

KL divergence (Kullback 1987). The second encoding layer is referred to as the label encoding

layer, where the source domain label information is encoded using a softmax regression model

(Friedman and Rob 2010), which can naturally handle multiple classes. It is worth mentioning that

the encoding weights are also used for the final classification model in the second encoding layer.

In this article, we further investigate why our proposed double encoding-layer autoencoder can

work for transfer learning. One of the most important issues in transfer learning is how tomeasure
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Fig. 1. The framework of TLDA.

the distance difference between different domains. Though the past decade has witnessed many

research works devoted to transfer-learning algorithms, how to design an effective distance mea-

sure is still an open and challenging problem. To that end, we propose to adapt autoencoder (AE)

to measuring the distance between different domains. Specifically, we first run autoencoder code

over the source domain data to derive the encoding and decoding weights, which are then applied

to target domain data. Finally, the distance measure is defined as the reconstruction error on tar-

get domain data. In other words, if the reconstruction error on target domain data is small, which

means that the learnt encoding and decoding weights from source domain can fit well on target do-

main data. Therefore, their distributions are regarded to be similar, vice versa. Experimental results

show that the proposed new measure can better reflect the degree of transfer difficulty and has

stronger correlation with the performance from supervised learning algorithms (e.g., Logistic Re-

gression), compared with previous ones, such as KL-Divergence and MaximumMean Discrepancy

(MMD). In the proposed framework TLDA, the encoding and decoding weights are shared across

different domains for knowledge transfer, which means that autoencoder is also used to draw the

distribution of embedded instances between source and target domains to be more similar. Overall,

both KL-divergence and Autoencoder are considered to draw the distribution closer, which leads

to the improvement of our framework. Furthermore, we also conduct additional experiments on a

real-world text dataset, which again validate the effectiveness of the proposed model.

In summary, the main contributions of this article are highlighted as follows:

(1) For the representation learning for transfer learning, we newly propose to use the double

encoding-layer autoencoder to learn common latent representations of source and tar-

get domains, in which the encoding and decoding weights are shared across domains for

knowledge transfer.

(2) The label information from source domain is tactfully incorporated by softmax regression

model, whose model parameters are shared with the second-layer encoding weights.
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(3) To empirically analyze why TLDA can work, we further develop a new distance measure

based on autoencoder, which can better reflect the degree of transfer difficulty. Thus, in

TLDA there indeed two distribution difference measures are considered to enforce the

distributions of two domains to be similar.

(4) Extensive experiments conducted on three real-world image datasets and one text data

demonstrate the effectiveness of our proposed method compared with several state-of-

the-art baseline methods.

The remainder of this article is organized as follows. Related work are first summarized in

Section 2, and some preliminary knowledge is introduced in Section 3. Section 4 details the

problem formulation and model learning. In Section 5, we conduct extensive experiments on

image and text classification problems to demonstrate the effectiveness of the proposed model.

Finally, Section 6 concludes the article.

2 RELATEDWORK

Since we adopt the transfer-learning techniques for transfer learning in this work, we first would

like to introduce some deep-learning methods for representation learning, and then the most re-

lated works of transfer learning.

Poultney et al. (2006) proposed an unsupervised method with an energy-based model for learn-

ing sparse and overcomplete features. In their method, the decoder produces accurate reconstruc-

tions of the patches, while the encoder provides a fast prediction of the code without the need

for any particular preprocessing of the inputs. Vincent and Manzagol (2008) proposed Denoising

autoencoders to learn a more robust representation from an artificially corrupted input, and fur-

ther proposed Stacked denoising autoencoders (Vincent et al. 2010) to learn useful representations

through a deep network. Joey Tianyi Zhou and Yan (2014) proposed a deep-learning approach to

heterogeneous transfer learning based on an extension ofmSDA,where instances in the source and

target domains are represented by heterogeneous features. In their proposed method, the bridge

between the source and target domains with heterogeneous features is built based on the corre-

sponding information of instances between the source and target domains, which is assumed to

be given in advance. Tzeng et al. (2015) proposed a new CNN architecture to exploit unlabeled

and sparsely labeled target domain data, which simultaneously optimizes for domain invariance

to facilitate domain transfer and uses a soft label distribution matching loss to transfer information

between tasks. Also, Ganin and Lempitsky (2015) proposed a new approach to domain adaptation

that can make full use of large amount of labeled data from the source domain and large amount

of unlabeled data from the target domain in a deep architecture. The most related work is learn-

ing transferable features with deep adaptation networks (Long et al. 2015, 2016), they proposed a

unified deep adaptation framework for jointly learning transferable representation and classifier

to enable scalable domain adaptation, by taking the advantages of both deep learning and optimal

two-sample matching. The main difference is that our model contains only two encoding-layer

under a supervised learning framework, which does not need to tune the depth of networks. Of

course, it would be promising to achieve better results by making deeper networks.

Transfer learning has attracted much attention in the past decade. To reduce the difference

between domains, two categories of transfer-learning approaches have been proposed. One is

based on the instance level, which aims to learn weights for the source domain labeled data, such

that the re-weighted source domain instances look similar to the target domain data instances

(Dai et al. 2007b; Gao et al. 2008; Xing et al. 2007; Jiang and Zhai 2007; Zhuang et al. 2010; Crammer

et al. 2012). The other is based on the feature representation level, which aims to learn a new

feature representation for both the source and target domain data, such that with the new feature
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Table 1. The Notation and Denotation

Ds , Dt The source and target domains

ns The number of instances in source domain

nt The number of instances in target domain

m The number of original features

k The number of nodes in embedding layer

c The number of nodes in label layer

x (s )
i , x (t )

i The i-th instance of source and target domains

x̂ (s )
i , x̂ (t )

i The reconstructions of x (s )
i and x (t )

i

y (s )
i The label of instance x (s )

i

ξ (s )
i , ξ (t )

i The hidden representations of x (s )
i and x (t )

i

ξ̂
(s )

i , ξ̂
(t )

i The reconstructions of ξ (s )
i and ξ (t )

i

z (s )i , z (t )i The hidden representations of ξ (s )
i and ξ (t )

i

W i , bi Encoding weight and bias matrix for layer i

W ′
i , b
′
i Decoding weight and bias matrix for layer i

� The transposition of a matrix

◦ The element-wise product of vectors or matrixes

representation the difference between domains can be reduced (Blitzer et al. 2006; Dai et al. 2007a;

Pan et al. 2008; Si et al. 2010; Pan et al. 2011; Xavier and Bengio 2011; Chen et al. 2012; Zhuang

et al. 2014; Gong et al. 2016). Based on the observation that multi-task share similar feature

structures, Liu et al. (2017) presented novel algorithm-dependent generalization bounds for MTL

by exploiting the notion of algorithmic stability. There are also some works about transfer metric

learning, for example, Luo et al. (2014) proposed a decomposition-based transfer distance metric

learning algorithm for image classification, which considered the transfer-learning setting by

exploiting the large quantity of side information from certain related, but different source tasks

to help with target metric learning.

Among most feature-based transfer-learning methods, only a few methods aim to minimize the

difference between domains explicitly in learning the new feature representation. For instance,

maximum mean discrepancy embedding (MMDE) (Pan et al. 2008) and transfer component anal-

ysis (TCA) (Pan et al. 2011) tried to minimize the distance in distributions between domains in a

kernel Hilbert space, respectively. The transfer subspace learning framework proposed by Si et al.

(2010) tried to find a subspace, where the distributions of the source and target domain data are

similar, through a minimization on the KL divergence of the projected instances between domains.

However, they are either based on kernel methods or regularization frameworks, rather than ex-

ploring a deep architecture to learn feature representations for transfer learning. Different from

previous works, in this article, our proposed TLDA is a supervised representation learning method

based on deep learning, which takes distance minimization between domains and label encoding

of the source domain into consideration.

3 PRELIMINARY KNOWLEDGE

The frequently used notations are listed in Table 1, and unless otherwise specified, all the vectors

are column vectors. In this section, we first review some preliminary knowledge that is used in

our proposed framework.
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3.1 Autoencoder

The simplest form of an autoencoder (Bengio 2009) is a feed forward neural network with an

input layer, an output layer and one or more hidden layers connecting them. But architecturally,

an autoencoder with the output layer having the same number of nodes as the input layer, and

with the purpose of reconstructing its own inputs. An autoencoder framework usually includes

the encoding and decoding processes. Given an input x , autoencoder first encodes it to one or

more hidden layers through several encoding processes, then decodes the hidden layers to obtain

an output x̂ . Autoencoder tries to minimize the deviation of x̂ from the input x , and the process

of autoencoder with one hidden layer can be summarized as:

Encoding : ξ = f (W 1x + b1), (1)

Decoding : x̂ = f (W ′
1ξ + b

′
1), (2)

where f is a nonlinear activation function (the sigmoid function, f (u) = 1
1+e−u , is adopted in this

article),W 1 ∈Rk×m andW ′
1 ∈Rm×k are weight matrices, b1 ∈Rk×1 and b ′1 ∈Rm×1 are bias vectors,

and ξ ∈Rk×1 is the output of the hidden layer. Given a set of inputs {x i }ni=1, the reconstruction

error can be computed by
∑n

i=1 ‖x̂ i − x i ‖2. The goal of autoencoder is to learn the weight matrices

W 1 andW ′
1, and the bias vectors b1 and b ′1 by minimizing the reconstruction error as follows,

min
W 1,b 1,W ′

1,b
′
1

n∑
i=1

‖x̂ i − x i ‖2. (3)

3.2 Softmax Regression

The softmax regression model (Friedman and Rob 2010) is a generalization of the logistic regres-

sion model for multi-class classification problems, where the class label y can take more than two

values, that is, y ∈ {1, 2, . . . , c} (where c ≥ 2 is the number of class labels). For a test instance x , we
can estimate the probabilities of each class that x belongs to as follows,

hθ (x ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p (yi = 1|x ;θ )
p (yi = 2|x ;θ )

...
p (yi = c |x ;θ )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1∑c

j=1 e
θ�j x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eθ
�
1 x

eθ
�
2 x

...

eθ
�
c x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

where
∑c

j=1 e
θ�j x is a normalized term, and θ 1, . . . ,θc are the model parameters.

Given the training set {xi ,yi }ni=1, yi ∈ {1, 2, . . . , c}, the solution of softmax regression can be

derived by minimizing the following optimization problem:

min
θ

�	


− 1
n

n∑
i=1

c∑
j=1

1{yi = j} log eθ
�
j x i∑c

l=1
eθ
�
l
x i

��


, (5)

where 1{·} is an indicator function, whose value is 1 if the expression is true, otherwise 0. Once

the model is trained, one can compute the probability of instance x belonging to a label j using
Equation (4) and assign its class label as

y = max
j

eθ
�
j x∑c

l=1
eθ
�
l
x
. (6)
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3.3 Kullback-Leibler Divergence

Kullback-Leibler (KL) divergence (Kullback 1987), also known as the relative entropy, is a non-

symmetric measure of the divergence between two probability distributions. Given two probability

distributionsP ∈ Rk×1 andQ ∈ Rk×1, the KL divergence ofQ fromP is the information lost whenQ

is used to approximate P (Liddle et al. 2010), defined asDKL (P | |Q ) =
∑k

i=1 P (i ) ln(
P (i )
Q (i ) ). In this arti-

cle, we adopt the symmetrized version of KL-divergence, KL(P ,Q ) = DKL (P | |Q ) + DKL (Q | |P ), to
measure the divergence for classification problems, smaller value of KL divergence indicates more

similar of two distributions. Thus, we use the KL divergence to measure the difference between

two data domains when they are embedded to the same latent space.

4 ADAPT DOUBLE ENCODING-LAYER AUTOENCODER TO TRANSFER LEARNING

4.1 Problem Formalization

Given two domains Ds and Dt , where Ds={x (s )
i ,y

(s )
i }|nsi=1 is the source domain labeled data with

x (s )
i ∈ Rm×1, and y (s )

i ∈ {1, . . . , c}, while Dt = {x (t )
i }|nti=1 is the target domain with unlabeled data.

Here, ns and nt are the numbers of instances in Ds and Dt , respectively.

As shown in Figure 1, there are three factors to be taken into consideration for representation

learning. Therefore, the objective to beminimized in our proposed learning framework for transfer

learning can be formalized as follows:

J = Jr (x , x̂ ) + αΓ (ξ
(s ), ξ (t ) ) + βL (θ , ξ (s ) )

+γΩ(W ,b,W ′,b ′). (7)

The first term of the objective is the reconstruction error for both source and target domain data,

which can be defined as

Jr (x , x̂ ) =
∑

r ∈{s,t }

nr∑
i=1

| |x (r )
i − x̂ (r )

i | |2, (8)

where

ξ (r )
i = f (W 1x

(r )
i + b1),z

(r )
i = f (W 2ξ

(r )
i + b2), (9)

ξ̂
(r )

i = f (W ′
2z

(r )
i + b

′
2), x̂

(r )
i = f (W ′

1ξ̂
(r )

i + b
′
1). (10)

For these two encoding layers, the first one is called as embedding layer to find good represen-

tation with an output ξ ∈ Rk×1 of k nodes (k ≤ m), while the second one is called as label layer to

encode label information with an output z ∈ Rc×1 of c nodes (equals to the number of class labels).

The output of first layer is the input for the second hidden layer. Here, the softmax Regression

is used as the regularization item on source domain to incorporate label information. In addition,

the output of the second layer is used as the prediction results for target domain. The third hidden

layer ξ̂ ∈ Rk×1 is the reconstruction of the embedding layer with the corresponding weight ma-

trix and bias vectorW ′
2 ∈ Rk×c and b ′2 ∈ Rk×1. Finally, x̂ ∈ Rm×1 is the reconstruction of x with

W ′
1 ∈ Rm×k and b ′1 ∈ Rm×1.
The second term in the objective Equation (7) is the KL divergence of embedded instances be-

tween the source and target domains, which can be written as

Γ (ξ (s ), ξ (t ) ) = DKL (Ps | |P t ) + DKL (P t | |Ps ), (11)
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where

P ′s =
1

ns

ns∑
i=1

ξ (s )
i , Ps =

P ′s∑
P ′s
, (12)

P ′t =
1

nt

nt∑
i=1

ξ (t )
i , P t =

P ′t∑
P ′t
. (13)

The goal of minimizing the KL divergence is to ensure the embedded source and target data dis-

tributions to be similar in the embedding space.

The third term in the objective Equation (7) is the loss function of softmax regression to incor-

porate the label information of the source domain into the embedding space. Specifically, this term

can be formalized as follows:

L (θ , ξ (s ) ) = − 1

ns

ns∑
i=1

c∑
j=1

1{y (s )
i = j} log eθ

�
j ξ

(s )
i

∑c
l=1

eθ
�
l
ξ (s )
i

,

where θ�j (j ∈ {1, . . . , c}) is the jth row ofW 2.

Finally, the last term in the objective Equation (7) is an regularization on model parameters, which

is defined as follows:

Ω(W ,b,W ′,b ′) = ‖W 1‖2+‖b1‖2 + ‖W 2‖2 + ‖b2‖2
+ ‖W ′

1‖2+‖b ′1‖2 + ‖W ′
2‖2 + ‖b ′2‖2.

The trade-off parameters α , β , and γ are positive constants to balance the effect of different

terms to the overall objective.

4.2 Model Learning

To minimize the problem of Equation (7) with respect toW 1, b1,W 2, b2,W ′
2, b

′
2,W

′
1, and b

′
1, we

adopt the gradient descent method to derive the solution. For succinctness, we first introduce some

intermediate variables as follows:

A(r )
i =

(
x̂ (r )
i − x (r )

i

)
◦ x̂ (r )

i ◦
(
1 − x̂ (r )

i

)
,

B (r )
i =

ˆξ (r )
i ◦

(
1 − ˆξ (r )

i

)
,

C (r )
i = z (r )i ◦

(
1 − z (r )i

)
,

D (r )
i = ξ (r )

i ◦
(
1 − ξ (r )

i

)
.

The partial derivatives of the objective Equation (7) w.r.t.W 1, b1,W 2, b2,W ′
2, b

′
2,W

′
1, and b

′
1

can be computed as follows, respectively,

∂J
∂W 1

=

ns∑
i=1

2W ′�
1 A(s )

i ◦ (W �
2 (W

′�
2 B (s )

i ◦C (s )
i )) ◦ D (s )

i x (s )�
i

+

nt∑
i=1

2W ′�
1 A(t )

i ◦ (W �
2 (W

′�
2 B (t )

i ◦C (t )
i )) ◦ D (t )

i x (t )�
i

+
α

ns

ns∑
i=1

D (s )
i ◦

(
1 − P t

Ps
+ ln

(
Ps
P t

))
x (s )�
i (14)
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+
α

nt

nt∑
i=1

D (t )
i ◦

(
1 − Ps

P t
+ ln

(
P t
Ps

))
x (t )�
i + 2γW 1

− β

ns

ns∑
i=1

c∑
j=1

1{y (s )
i = j}

(
W �

2j −
W �

2 e
W 2ξ

(s )
i

∑
l e

W 2l ξ
(s )
i

)
◦ D (s )

i x (s )�
i ,

∂J
∂W 2j

=

ns∑
i=1

2W ′�
2j (W

′�
1 A(s )

i ◦ B (s )
i ) ◦C (s )

i j ξ
(s )�
i

+

nt∑
i=1

2W ′�
2j (W

′�
1 A(t )

i ◦ B (t )
i ) ◦C (t )

i j ξ
(t )�
i (15)

− β

ns j
�



ns j∑
i=1

ξ (s )�
i −

ns∑
i=1

eW 2j ξ
(s )
i∑

l e
W 2l ξ

(s )
i

ξ (s )�
i

�


+ 2γW 2j ,

∂J
∂W ′

2

=

ns∑
i=1

2W ′�
1 A(s )

i ◦ B (s )
i z (s )�i + 2γW ′

2

+

nt∑
i=1

2W ′T
1 A(t )

i ◦ B (t )
i z (t )�i , (16)

∂J
∂W ′

1

=

ns∑
i=1

2A(s )
i

ˆξ (s )�
i +

nt∑
i=1

2A(t )
i

ˆξ (t )�
i + 2γW ′

1, (17)

whereW 2j is the jth row ofW 2, and ns j is the number of instances with the label j in source

domain. As the partial derivatives of the objective Equation (7) w.r.t. b1, b2, b ′2, b
′
1 are very similar

to those of W 1, W 2, W ′
2, W

′
1, respectively, we omit the details to avoid redundancy. Based on

the preceding partial derivatives, we develop an alternatively iterating algorithm to derive the

solutions by using the following rules:

W 1 ←W 1 − η ∂J
∂W 1

, b1 ← b1 − η ∂J
∂b1
,

W ′
1 ←W ′

1 − η
∂J
∂W ′

1

, b ′1 ← b ′1 − η
∂J
∂b ′1
,

W 2 ←W 2 − η ∂J
∂W 2

, b2 ← b2 − η ∂J
∂b2
,

W ′
2 ←W ′

2 − η
∂J
∂W ′

2

, b ′2 ← b ′2 − η
∂J
∂b ′2
,

(18)

where η is the step length, which determines the speed of convergence. The details of the pro-

posed algorithm is summarized in Algorithm 1. Note that the proposed optimization problem is

not convex, and thus there is no guarantee on obtaining an optimal global solution. To achieve a

better local optimal solution of the proposed gradient descent approach, we first run SAE on all

source and target domain data for pre-training, and then use the output of SAE to initialize the

encoding and decoding weights.
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ALGORITHM 1: Transfer Learning with Double Encoding-Layer Autoencoder (TLDA)

Input: Given one source domain Ds = {x (s )
i
,y

(s )
i
}|ns
i=1, and one target domain Dt = {x (t )

i
}|nt
i=1, trade-off

parameters α , β , γ , the number of nodes in embedding layer and label layer, k and c .
Output: Results of label layer z and embedded layer ξ .

(1) InitializeW 1,W 2,W ′
2,W

′
1 and b1, b2, b

′
2, b
′
1 by Stacked Autoencoders performed on both source and

target domains;

(2) Compute the partial derivatives of all variables according to Equations (14), (15), (16), and (17);

(3) Iteratively update the variables using Equations (18);

(4) Continue Step2 and Step3 until the algorithm converges;

(5) Computing the embedding layer ξ and label layer z using Equation (9), and then construct target

classifiers as described in Section 4.3.

4.3 Classifier Construction

After all the parameters are learned, we can construct classifiers for the target domain in two

ways. The first way is directly to use the output of the second encoding layer. That is, for any

instance x (t ) in the target domain, the output of the label layer z (t ) = f (W 2ξ
(t ) + b2) can indicate

the probabilities of x (t ) , which class it belongs to.We choose the maximum probability and the cor-

responding label as the prediction. The second way is to apply standard classification algorithms,

for example, logistic regression(LR) (Snyman 2005; Friedman and Rob 2010) to train a classifier on

embedded source domain data. Then the classifier is applied to predict class labels for embedded

target domain data. These two methods are denoted as TLDA1 and TLDA2, respectively.

4.4 Distance Measure for Distribution Difference

It is well known that measuring the distribution discrepancy between different domains is still

a challenging problem. Here, we propose a new distance measure based on autoencoder and try

to explain why the proposed double encoding-layer autoencoder framework can work well for

transfer learning. Given the source domain data withDs = {x (s )
i }|nsi=1, and target domain dataDt =

{x (t )
i }|nti=1, we first run the autoencoder code over the source domain data to derive the encoding

and decoding weights,W (s )
1 , b (s )

1 ,W ′(s )
1 , b ′(s )1 by the following optimization problem:

min
W (s )

1 ,b (s )
1 ,W ′(s )

1 ,b ′(s )1

ns∑
i=1

‖x̂ (s )
i − x (s )

i ‖2. (19)

Then the distance measure based on autoencoder is formally defined as

AE =
1

nt

nt∑
i=1

‖x̂ (t )
i − x (t )

i ‖2, (20)

where

ξ (t ) = f (W (s )
1 x (t ) + b (s )

1 ),

x̂ (t ) = f (W ′
1
(s )ξ (t ) + b ′1

(s ) ).
(21)

A smaller value of AE indicates that target domain has a more similar distribution with source

domain, whereas a bigger value of AE shows the larger gap of distribution mismath. If the target

domain is equivalent to the source domain, then we have the smallest value of AE, in other word,

the value of AE can be equivalent to 0 if the encoding and decoding weights are finely learnt.

Thus, the proposed distance measure AE can be used to measure how close between the source
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Table 2. Description of the ImageNet Dataset

D1 D2 D3 D4 D5

#positive instance 1,510 1,326 1,415 1,555 986

#negitive instance 1,427 1,427 1,427 1,427 1,427

#features 1,000 1,000 1,000 1,000 1,000

and target domains. It is acknowledged that if the distribution difference between source and tar-

get domains is small, the traditional supervised learning can perform well on the target domain,

whereas the worse performance is obtained. The results in the experimental section coincide with

this analysis. In our framework TLDA, the encoding and decoding weights are shared across dif-

ferent domains for knowledge transfer, and the source and target domain data are embedded to the

common representations, which implies that autoencoder is also used to draw the distributions to

be more similar.

5 EXPERIMENTAL EVALUATION

In this section, we first conduct systemic experiments on three real-world image datasets and one

text dataset to show the effectiveness of the proposed framework. Three of the these four datasets

are on binary classification, and the last one is on multi-class classification. Then, we empirically

investigate why our framework can work well for transfer learning.

5.1 Datasets and Preprocessing

ImageNet Dataset1 contains five domains, that is, D1 (ambulance+scooter), D2 (taxi+scooter), D3

(jeep+scooter), D4 (minivan+scooter), and D5 (passenger car+scooter). Data from different domains

come from different categories, for example, taxi fromD2 and jeep fromD3; therefore, this dataset is

proper for a transfer-learning study. To construct classification problems, we randomly choose two

from the five domains, where one is considered as the source domain and the other is considered

as the target domain. Therefore, we construct 20 (P2
5 ) transfer-learning classification problems.

Statistics of this dataset is shown in Table 2.

Corel Dataset2 Zhuang et al. (2010) include two different top categories, flower and traffic. Each

top category further consists of four subcategories. We use flower as positive instances and traffic

as negative ones. To construct the transfer-learning classification problems, we randomly select

one subcategory from flower and one from traffic as the source domain, and then choose another

subcategory of flower and another one of traffic from the remaining subcategories to construct the

target domain. In this way, we can construct 144 (P2
4 · P2

4 ) transfer-learning classification problems.

Leaves Dataset Mallah and Orwell (2013) includes 100 plant species that are divided into 32 dif-

ferent genera, and each specie has 16 instances. We choose four genera with more than four plant

species to construct four-class classification problems, and use 64 shape descriptor features to rep-

resent an instance. Each genus is regarded as a domain. Similar to the construction of ImageNet

dataset, we can construct 12 (P2
4 ) four-class classification problems.

Health Dataset is used for web content classification in the previous work (Banerjee and Scholz

2008). The web pages from the publicly available web resources are categorized under many cate-

gories, for example, health, shopping, science, programming, and music. In this article, we want to

1http://www.image-net.org/download-features.
2http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features.
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classify the web pages to belong to health or not for each web resource, and the data are crawled

from four public web sites, including Wikipedia,3 DMOZ,4 Google,5 and Del.icio.us.6 If each web

resource is regarded as a domain, then the data from different domains may have different distri-

butions. Therefore, the constructed problems are suitable for transfer learning. Similarly with the

construction method of ImageNet dataset, we can finally construct 12 (P2
4 ) classification problems

for four domains. In this dataset, each domain contains about 1,800 web pages, and the number of

features is 6,045.

5.2 Baseline Methods

We compare our methods with the following baselines:

—Logistic Regression (LR) (Friedman and Rob 2010): traditional supervised learning algorithm

without transfer learning.

—Transfer component analysis (TCA) (Pan et al. 2011): it aims at learning a low-dimensional

representation for transfer learning. Here, we also use Logistic Regression as the basic

classifier.

—Marginalized Stacked Denoising Autoencoders (mSDA) (Chen et al. 2012): this is a transfer-

learning algorithms based on stacked autoencoders.

Since TLDA considers two distance measures, that is, KL and AE, so we further compare the one

without considering KL divergence, that is, α = 0. This method is indeed a special case of TLDA,

denoted as DA.

Implementation Details: After some preliminary experiments, we set α = 0.5, β = 0.5, γ =
0.00001, and k = 10 for the ImageNet and Corel datasets, α = 0.5, β = 0.05, k = 5, and γ = 0.0001
for the Leaves dataset, while α = 10, β = 10, k = 20, and γ = 0.005 for the Health dataset. For

mSDA, we use the authors’ source code7 and adopt the default parameters as reported in Chen

et al. (2012). For TCA, the number of latent dimensions is carefully tuned, for example, for the

Corel dataset, the number is sampled from [10, 80] with interval 10, and its best results are re-

ported. Note that, the sigmoid function is used as the nonlinear activation function in autoencoder,

and the range of output values are between 0 and 1. Therefore, the samples of four datasets are

normalized in this way x = x√
x�x

.

5.3 Experimental Results

All the results of these four datasets are shown in Figure 2 and Table 3. Figure 2 shows the detailed

results over the 20 classification problems on the ImageNet dataset, in which x axis represents

the index of the problems, and y axis represents the corresponding accuracy. All the problems are

sorted by the increasing order of the accuracy from LR for clear comparison. From the figure, we

have the following insightful observations:

—TLDA is significantly better than LR on all datasets, which indicates the efficiency of our

proposed transfer-learning framework.

—TLDA performs better than TCA, which shows the superiority of applying double

encoding-layer autoencoder to learn a good representation for transfer learning. TLDA also

3http://www.wikipedia.org/.
4http://www.dmoz.org/.
5http://www.google.com.
6http://del.icio.us/.
7http://www.cse.wustl.edu/mchen/.
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Fig. 2. Classification accuracy on the ImageNet dataset.

Table 3. Average Results (%) on Four Datasets

LR TCA mSDA DA1 DA2 TLDA1 TLDA2

ImageNet Dataset

Left 67.0 64.3 67.6 77.4 76.1 83.4 87.4

Right 81.2 76.3 84.1 86.2 86.2 89.0 90.2

Total 80.5 75.7 83.3 85.7 85.7 88.7 90.1

Corel Dataset

Left 61.7 65.4 70.5 64.6 65.8 71.1 74.0

Right 80.1 82.0 75.4 80.1 80.3 83.2 83.0

Total 74.8 76.5 74.0 75.6 76.1 79.6 80.4

Leaves Dataset

Left 51.9 65.9 47.2 63.4 59.1 64.1 57.8

Right 75.0 89.8 59.4 58.6 57.8 91.4 89.8

Total 55.7 69.9 49.2 62.6 58.9 68.6 63.2

Health Dataset

Left 62.6 68.7 61.5 60.4 60.4 70.4 70.4

Right 80.1 74.5 85.0 81.7 81.6 84.7 84.7

Total 74.3 72.3 77.2 74.6 74.6 79.9 79.9

outperforms mSDA, which indicates the effectiveness of encoding label information from

source domain.

—TLDA is better than DA, which indicates that TLDA can benefit from taking advantage of

both distance measures, that is, KL and AE. DA is also better than LR, which shows the

success of using deep learning for transfer learning.

—LR performs slightly worse than mSDA, even better than TCA sometimes. This may be

because on the constructed cross-domain classification problems, it is not easy to make

knowledge transfer successfully. This observation again validates the effectiveness of our

method.
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Fig. 3. The study of parameter influence on TLRA1.

We also divide the constructed problems into two groups: the first group consists of problems

on which the classification accuracy of LR is lower than 70%, and the rest problems are considered

as a second group. The lower of classification accuracy of LR in some certain indicates the higher

degree of the difficulty in knowledge transfer. The averaged accuracy of these two group as well

as the averaged accuracy over all problems on these four datasets are reported in Table 3, denoted

as Left, Riдht , andTotal , respectively. We can find that the proposed methods perform better than

all the compared algorithms on both groups of problems, except for that on the Leaves dataset,

the performance of TLDA1 is comparable with that of TCA. Also, in general, we observe the much

larger margin of accuracy improvement of TLDA on all datasets when the accuracy from LR is

lower than 70%, which indicates the stronger transfer ability of our model.

5.4 Why TLDA Can Work for Transfer Learning

Asmentioned earlier, the classification accuracy of LR can indicate the degree of transfer difficulty.

In other words, higher (or lower) accuracy of LR indicates easier (or harder) to make transfer. Here,

we empirically investigate the relationship between the accuracy of LR on the Corel dataset and

AE, and we compare AE with the other two measures KL and MMD. Note that here the values of

KL and MMD are computed based on the original feature space. The detailed results are shown

in Figure 4. It is obviously observed that AE can better reflect the degree of transfer difficulty and
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Fig. 4. The Relationship between the Accuracy (%) of LR and three distance measures on the Corel dataset.

Table 4. The Correlation Coefficients between the Accuracy of

LR and Three Distance Measures on Four Datasets

AE KL MMD

ImageNet Dataset −0.1365 0.1312 0.2041

Corel Dataset −0.2009 0.1796 0.1616

Leaves Dataset −0.5074 −0.3339 −0.3751
Health Dataset −0.1665 −0.1600 −0.0521

have stronger correlation with the performance of LR, and AE significantly outperforms both KL

and MMD.

To quantitatively show the effectiveness of AE, the correlation coefficients between the accu-

racy of LR and three distance measures on four datasets are recorded in Table 4. (The value range

of correlation coefficient is [−1, 1], and minus value means negative correlation.) Since lower val-

ues of three measures indicate the transfer-learning problems easier to make transfer, and higher

accuracies of LR can be obtained. Therefore, lower value of correlation coefficient is better. These

results in Table 4 again validate the effectiveness of AE. In our model TLDA, both source and target

domains share the same encoding and decoding weights, which means that AE is also adopted as
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well as KL to enforce their distributions more similar. We conjecture this consideration of both AE

and KL lead to the success of our model.

5.5 Parameter Sensitivity

In this section, we investigate the influence of the parameters α , β , and k in the objective Equa-

tion (7). In this experiment, when tuning one parameter, the values of the rest two are fixed.

Specifically, α and β are sampled from {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100}, and k is selected from

10, 20, . . . , 80. We select 10 of the 144 problems on the Corel dataset for experiment and report the

results in Figure 3. From the figure, we can observe that the performance of TLDA1 is relatively

stable to the selection of α and β , while it decreases dramatically when the value of k is large.

Thus, we set α = 0.5, β = 0.5, and k = 10 to achieve good and stable results for the ImageNet and

Corel datasets.

6 CONCLUSION

In this article, we adapt the double encoding-layer autoencoder to transfer learning and propose

a supervised representation learning framework. In this framework, the well-known representa-

tion learning model autoencoder is considered, and we extend it to a deeper architecture. Indeed,

there are two layers for encoding, one is for embedding, where we impose the KL divergence con-

straints to draw the two distributions of embedded source and target domains similar. The other is

label layer, by which we can easily encode the label information from source domain. A series of

experiments conducted on three real-world image datasets and one text dataset demonstrate the

effectiveness of the proposed methods. Furthermore, to empirically analyze why TLDA can work

well for transfer learning, we propose a new distance measure based on autoencoder, which is

validated to better characterize the degree of transfer difficulty. We conjecture the success of our

model may be owed to the consideration of both AE and KL.
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